Novel synthesizing method of pH-dependent doxorubicin-loaded anti-CD22-labelled drug delivery nanosystem

نویسندگان

  • Mengjiao Sun
  • Jun Wang
  • Qin Lu
  • Guohua Xia
  • Yu Zhang
  • Lina Song
  • Yongjun Fang
چکیده

The objective of this study was to investigate the anticancer efficacy of dimercaptosuccinic acid-modified iron oxide magnetic nanoparticles coloaded with anti-CD22 antibodies and doxorubicin (anti-CD22-MNPs-DOX) on non-Hodgkin's lymphoma cells. The physical properties of anti-CD22-MNPs-DOX were studied and its antitumor effect on Raji cells in vitro was evaluated using the Cell Counting Kit-8 assay. Furthermore, cell apoptosis and intracellular accumulation of doxorubicin were determined by flow cytometry. The results revealed that anti-CD22-MNPs-DOX inhibited the proliferation of Raji cells, significantly increased the uptake of doxorubicin, and induced apoptosis. Therefore, it was concluded that a coloaded antibody and chemotherapeutic drug with magnetic nanoparticles might be an efficient targeted treatment strategy for non-Hodgkin's lymphoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance

B-cell lymphoma accounts for approximately 85% of all adult non-Hodgkin's lymphoma cases. Doxorubicin (DOX) is an indispensable drug for the treatment of non-Hodgkin's lymphoma. However, DOX causes severe cardiotoxicity, which limits its use in conventional treatment strategies. In this study, we developed a novel drug delivery system for lymphoma treatment: DOX-loaded platelets that were conju...

متن کامل

Synthesis and cytotoxicity evaluation of electrospun PVA magnetic nanofibers containing doxorubicin as targeted nanocarrier for drug delivery

Objective(s): The purpose of this study was preparation and evaluation of PVA-Fe3O4 nanofibers as nanocarrier of doxorubicin (DOX) by measuring their drug release together with their in vitro cytotoxicity toward cancer cells at different pH values. Methods: Fe3O4 nanoparticles were synthesized by coprecipitation...

متن کامل

Anti-cancer and anti-immunomodulatory properties of novel Arteether in Folic acid-Chitosan-Fe3O4 composite nanoparticle for treatment of breast cancer

Goal: The potent anti-cancer activity of Arteether (ARE) has been the focus of many studies. However, the hydrophobic property of this drug limits its application. To increase the bioavailability of ARE, we formulated a nanosystem (NS) of folic acid (FA), chitosan (CS) and Fe3O4 for delivery of ARE against breast cancer. Material and Methods: The CS coated Fe3O4 was synthesized by co-precipitat...

متن کامل

Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption

Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...

متن کامل

Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption

Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015